Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 123: 110750, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37536181

ABSTRACT

Leishmaniasis, presenting the highest number of cases worldwide is one of the most serious Neglected Tropical Diseases (NTDs). Clinical manifestations are intrinsically related to the host's immune response making immunomodulatory substances the target of numerous studies on antileishmanial activity. The currently available drugs used for treatment present various problems including high toxicity, low efficacy, and associated drug resistance. The search for therapeutic alternatives is urgent, and in this context, thiophene derivatives appear to be a promising therapeutic alternative (many have shown promising anti-leishmanial activity). The objective of this study was to investigate the antileishmanial activity of the 2-amino-thiophenic derivative SB-200. The thiophenic derivative was effective in inhibiting the growth of Leishmania braziliensis, Leishmania major, and Leishmania infantum promastigotes, obtaining respective IC50 values of 4.25 µM, 4.65 µM, and 3.96 µM. For L. infantum, it was demonstrated that the antipromastigote effect of SB-200 is associated with cell membrane integrity losses, and with morphological changes observed during scanning and transmission electron microscopy. Cytotoxicity was performed for J774.A1 macrophages and VERO cells, to obtain a CC50 of 42.52 µM and a SI of 10.74 for macrophages and a CC50 of 39.2 µM and an SI of 9.89 for VERO cells. The anti-amastigote activity of SB-200 revealed an IC50 of 2.85 µM and an SI of 14.97 against macrophages and SI of 13.8 for VERO cells. The anti-amastigote activity of SB-200 is associated with in vitro immunomodulation. For acute toxicity, SB-200 against Zophobas morio larvae permitted 100% survival. We conclude that the 2-amino-thiophenic derivative SB-200 is a promising candidate for in vivo anti-leishmania drug tests to evaluate its activity, efficacy, and safety.


Subject(s)
Antiprotozoal Agents , Leishmania infantum , Leishmaniasis , Animals , Chlorocebus aethiops , Mice , Vero Cells , Thiophenes/pharmacology , Thiophenes/therapeutic use , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Leishmaniasis/drug therapy , Mice, Inbred BALB C
2.
Polymers (Basel) ; 15(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37447501

ABSTRACT

Tree-exuded gums are natural polymers that represent an abundant raw material in the food and pharmaceutical industries. The cashew gum can be obtained by exudation of trees of the genus Anacardium, a native species of the Brazilian northeast; its polymer consists of monosaccharide units propitious to the action of chemical reactions that tend to improve their intrinsic characteristics among them, as the degree of hydro-solubility. The objective of this work was to modify the exudate gum of Anacardium occidentale (cashew gum (CG)) through an amine reaction. The modification was confirmed by Nuclear Magnetic Resonance (1H NMR), infrared spectroscopy (FTIR), gel permeation chromatography (GPC), zeta potential, and thermogravimetric analysis (TG). In addition, the chemical modification altered the molar mass and surface charge of the CG, and the amino group binding to the CG polymers was confirmed by FTIR spectra. In addition, cytotoxicity tests were performed where cell viability was estimated by an MTT assay on RAW 264.7 macrophages. Through these tests, it was found that the amine caused an increase in the thermal stability of the amino compounds and did not present cytotoxic potential at concentrations below 50.0 mg/L.

3.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-37259336

ABSTRACT

Leishmaniasis is a group of infectious-parasitic diseases with high mortality rates, and endemic in many regions of the globe. The currently available drugs present serious problems such as high toxicity, costs, and the emergence of drug resistance. This has stimulated research into new antileishmania drugs based on natural products and their derivatives. ß-Ocimene is a monoterpene found naturally in the essential oils of many plant species which presents antileishmanial activity, and which has not yet been evaluated for its potential to inhibit the etiological agent of leishmaniasis. The aim of this work was to evaluate the activity of ß-ocimene against Leishmania amazonensis, its cytotoxicity, and potential mechanisms of action. ß-Ocimene presented direct activity against the parasite, with excellent growth inhibition of promastigotes (IC50 = 2.78 µM) and axenic amastigotes (EC50 = 1.12 µM) at concentrations non-toxic to RAW 264.7 macrophages (CC50 = 114.5 µM). The effect is related to changes in membrane permeability and resulting abnormalities in the parasitic cell shape. These were, respectively, observed in membrane integrity and atomic force microscopy assays. ß-Ocimene was also shown to act indirectly, with greater activity against intra-macrophagic amastigotes (EC50 = 0.89 µM), increasing TNF-α, nitric oxide (NO), and reactive oxygen species (ROS), with lysosomal effects, as well as promoting decreases in IL-10 and IL-6. Against intra-macrophagic amastigote forms the selectivity index was higher than the reference drugs, being 469.52 times more selective than meglumine antimoniate, and 42.88 times more selective than amphotericin B. Our results suggest that ß-ocimene possesses promising in vitro antileishmania activity and is a potential candidate for investigation in in vivo assays.

4.
Int Immunopharmacol ; 100: 108130, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34500286

ABSTRACT

Leishmaniasis is a set of infectious diseases with high rates of morbidity and mortality, it affects millions of people around the world. Treatment, mainly with pentavalent antimonials, presents significant toxicity and many cases of resistance. In previous works we have demonstrated the effective and selective antileishmanial activity of Eugenia uniflora L. essential oil, being constituted (47.3%) by the sesquiterpene curzerene. Considering the high rate of parasite inhibition demonstrated for E. uniflora essential oil, and the significant presence of curzerene in the oil, this study aimed to evaluate its antileishmania activity and possible mechanisms of action. Curzerene was effective in inhibiting the growth of promastigotes (IC50 3.09 ± 0.14 µM) and axenic amastigotes (EC50 2.56 ± 0.12 µM), with low cytotoxicity to RAW 264.7 macrophages (CC50 83.87 ± 4.63 µM). It was observed that curzerene has direct effects on the parasite, inducing cell death by apoptosis with secondary necrotic effects (producing pores in the plasma membrane). Curzerene proved to be even more effective against intra-macrophage amastigote forms, with an EC50 of 0.46 ± 0.02 µM. The selectivity index demonstrated by curzerene on these parasite forms was 182.32, being respectively 44.15 and 8.47 times more selective than meglumine antimoniate and amphotericin B. The antiamastigote activity of curzerene was associated with immunomodulatory activity, as it increased TNF-α, IL-12, and NO levels, and lysosomal activity, and decreased IL-10 and IL-6 cytokine levels detected in macrophages infected and treated. In conclusion, our results demonstrate that curzerene is an effective and selective antileishmanial agent, a candidate for in vivo investigation in models of antileishmanial activity.


Subject(s)
Antiprotozoal Agents/pharmacology , Leishmania mexicana/drug effects , Sesquiterpenes/pharmacology , Animals , Antiprotozoal Agents/therapeutic use , Apoptosis/drug effects , Humans , Interferon-gamma/metabolism , Interleukin-10/metabolism , Interleukin-12/metabolism , Interleukin-6/metabolism , Leishmania mexicana/growth & development , Macrophages/drug effects , Mice , Mice, Transgenic , Molecular Docking Simulation , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/metabolism
5.
Toxicol In Vitro ; 74: 105158, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33823240

ABSTRACT

BACKGROUND: Leishmaniasis is a parasitosis with a wide incidence in developing countries. The drugs which are indicated for the treatment of this infection usually are able to promote high toxicity. PURPOSE: A combination of limonene and carvacrol, monoterpenes present in plants with antiparasitic activity may constitute an alternative for the treatment of these diseases. METHODS: In this study, the antileishmania activity against Leishmania major, cytotoxicity tests, assessment of synergism, parasite membrane damage tests as well as molecular docking and immunomodulatory activity of limonene-carvacrol (Lim-Car) combination were evaluated. RESULTS: The Lim-Car combination (5:0; 1:1; 1:4; 2:3; 3:2; 4:1 and 0:5) showed potential antileishmania activity, with mean inhibitory concentration (IC50) ranging from 5.8 to 19.0 µg.mL-1. They demonstrated mean cytotoxic concentration (CC50) ranging from 94.1 to 176.0 µg.mL-1, and did not show significant hemolytic effect. In the investigation of synergistic interaction, the 4:1 Lim-Car combination showed better fractional inhibitory concentration (FIC) index as well as better activity on amastigotes and IS. The samples caused considerable damage to the parasite membrane this monoterpene activity seems to be more related to Trypanothione Reductase (TryR) enzyme interaction, demonstrated in the molecular docking assay. In addition, the 4:1 Lim-Car combination stimulated macrophage activation, and showed at was the best association, with reduction of infection and infectivity of parasitized macrophages. CONCLUSION: The 4:1 Lim-Car combination appears to be a promising candidate as a monotherapeutic antileishmania agent.


Subject(s)
Antiprotozoal Agents/toxicity , Cymenes/toxicity , Immunologic Factors/toxicity , Leishmania major/drug effects , Limonene/toxicity , Animals , Cell Survival/drug effects , DNA-Directed DNA Polymerase/metabolism , Drug Combinations , Drug Synergism , Erythrocytes/drug effects , Hemolysis/drug effects , Lysosomes/drug effects , Macrophages/drug effects , Macrophages/parasitology , Molecular Docking Simulation , NADH, NADPH Oxidoreductases/metabolism , Protozoan Proteins/metabolism , Sheep
6.
Chem Biol Interact ; 339: 109429, 2021 Apr 25.
Article in English | MEDLINE | ID: mdl-33713644

ABSTRACT

Leishmaniasis is considered as one of the most Neglected Tropical Diseases (NTDs) in the world, caused by protozoan parasites of the genus Leishmania. Treatment of leishmaniasis by chemotherapy remains a challenge because of limited efficacy, toxic side effects, and drug resistance. The search for new therapeutic agents from natural sources has been a constant for the treatment of diseases such as leishmaniasis. The objective of this study was to evaluate the biological activity of Eugenia piauhiensis Vellaff. essential oil (EpEO) and its major constituent γ-elemene on promastigote and amastigote forms of Leishmania (Leishmania) amazonensis, its cytotoxicity, and possible mechanisms of action. EpEO was more active (IC50 6.43 ± 0.18 µg/mL) against promastigotes than γ-elemene [9.82 ± 0.15 µg/mL (48.05 ± 0.73 µM)] and the reference drug miltefosine [IC50 17.25 ± 0.26 µg/mL (42.32 ± 0.64 µM)]. EpEO and γ-elemene exhibited low cytotoxicity against J774.A1 macrophages, with CC50 225.8 ± 3.57 µg/mL and 213.21 ± 3.3 µg/mL (1043 ± 16.15 µM), respectively. Additionally, EpEO and γ-elemene present direct activity against the parasite, decreasing plasma membrane integrity. EpEO and γ-elemene also proved to be even more active against intracellular amastigotes of the parasite [IC50 4.59 ± 0.07 µg/mL and 8.06 ± 0.12 µg/mL (39.44 ± 0.59 µM)], respectively), presenting indirect effects through macrophage activity modulation. Anti-amastigote activity was associated with increased TNF-α, IL-12, NO, and ROS levels. In conclusion, our results suggest EpEO and γ-elemene as promising candidates for new drug development against leishmaniasis.


Subject(s)
Antiprotozoal Agents/pharmacology , Cell Membrane/drug effects , Eugenia/chemistry , Immunomodulation/drug effects , Leishmania mexicana/drug effects , Oils, Volatile/pharmacology , Sesquiterpenes/pharmacology , Animals , Cell Line , Leishmaniasis/drug therapy , Leishmaniasis/parasitology , Macrophages/parasitology , Mice , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/pharmacology
7.
Int Immunopharmacol ; 90: 107124, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33168414

ABSTRACT

Leishmaniasis is caused by several protozoan species of Leishmania, and being endemically present in 98 countries around the world, it is also a severe public-health problem. The available antileishmanial drugs are toxic and yet present risks of recurrent infection. Efforts to find new, effective, and safe oral agents for the treatment of leishmaniasis are continuing throughout the world. This work aimed to evaluate the antileishmania activity of cordiaquinone E (CORe), isolated from the roots of Cordia polycephala (Lam.) I. M. Johnston. Cytotoxicity, and possible mechanisms of action against promastigote and amastigote forms of Leishmania amazonensis were examined. CORe was effective in inhibiting promastigote (IC50 4.5 ± 0.3 µM) and axenic amastigote (IC50 2.89 ± 0.11 µM) growth in concentrations found non-toxic for the host cell (CC50 246.81 ± 14.5 µM). Our results revealed that CORe presents direct activity against the parasite, inducing cell death by apoptosis. CORe present greater activity against intracellular amastigotes (EC50 1.92 ± 0.2 µM), yet with much higher selectivity indexes than the reference drugs, being respectively more benign towards RAW 264.7 macrophages than meglumine antimoniate and amphotericin B, (respectively by 4.68 and 42.84 fold). The antiamastigote activity was associated with increased TNF-α, IL-12, NO, and ROS levels, as well as decreased IL-10 levels. These results encourage the progression of studies on this compound for the development of new leishmanicidal agents.


Subject(s)
Leishmania mexicana/drug effects , Leishmaniasis, Cutaneous/drug therapy , Macrophages/drug effects , Naphthoquinones/pharmacology , Trypanocidal Agents/pharmacology , Animals , Apoptosis/drug effects , Cytokines/metabolism , Dose-Response Relationship, Drug , HL-60 Cells , Host-Parasite Interactions , Humans , Leishmania mexicana/growth & development , Leishmaniasis, Cutaneous/metabolism , Leishmaniasis, Cutaneous/parasitology , Macrophages/metabolism , Macrophages/parasitology , Mice , Naphthoquinones/toxicity , Nitric Oxide/metabolism , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Trypanocidal Agents/toxicity
8.
Curr Top Med Chem ; 20(19): 1704-1719, 2020.
Article in English | MEDLINE | ID: mdl-32543360

ABSTRACT

BACKGROUND: Chemoinformatics has several applications in the field of drug design, helping to identify new compounds against a range of ailments. Among these are Leishmaniasis, effective treatments for which are currently limited. OBJECTIVE: To construct new indole 2-aminothiophene molecules using computational tools and to test their effectiveness against Leishmania amazonensis (sp.). METHODS: Based on the chemical structure of thiophene-indol hybrids, we built regression models and performed molecular docking, and used these data as bases for design of 92 new molecules with predicted pIC50 and molecular docking. Among these, six compounds were selected for the synthesis and to perform biological assays (leishmanicidal activity and cytotoxicity). RESULTS: The prediction models and docking allowed inference of characteristics that could have positive influences on the leishmanicidal activity of the planned compounds. Six compounds were synthesized, one-third of which showed promising antileishmanial activities, with IC50 ranging from 2.16 and 2.97 µM (against promastigote forms) and 0.9 and 1.71 µM (against amastigote forms), with selectivity indexes (SI) of 52 and 75. CONCLUSION: These results demonstrate the ability of Quantitative Structure-Activity Relationship (QSAR)-based rational drug design to predict molecules with promising leishmanicidal potential, and confirming the potential of thiophene-indole hybrids as potential new leishmanial agents.


Subject(s)
Antiprotozoal Agents/pharmacology , Drug Design , Indoles/pharmacology , Leishmania/drug effects , Thiophenes/pharmacology , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Indoles/chemistry , Models, Molecular , Molecular Structure , Quantitative Structure-Activity Relationship , Thiophenes/chemistry
9.
Chem Biol Interact ; 320: 109026, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32112863

ABSTRACT

Leishmaniasis is a widespread tropical infection caused by different species of Leishmania protozoa. Many of the available drugs against the disease are toxic and in certain cases parasite drug resistance is developed. The discovery of drugs for the treatment of leishmaniasis is a pressing concern. In the present work, we describe in vitro studies of the phenolic compound methyl gallate (MG) against Leishmania (Leishmania) amazonensis and its possible mechanisms of action. The in vitro activity of MG was assayed against L. amazonensis (promastigotes, axenic amastigotes, and intramacrophagic amastigotes). Cytotoxicity tests were performed with J774A.1 macrophages and THP-1 cell derived macrophages. To evaluate mechanisms of action, we analyzed cellular TNF-α, IL-12, IFN-γ, IL-10, IL-6, NO, ROS levels, arginase activity, and structural mechanisms (phagocytic and lysosomal activities) involving macrophage activation. Meglumine antimoniate and amphotericin B were used as reference drugs. It was observed that MG effectively inhibited the growth of both promastigote (IC50 5.71 µM) and amastigote-like forms (EC50 5.39 µM), with much higher selectivity indexes than the reference drugs, being more benign towards J774A.1 macrophages than meglumine antimoniate and amphotericin B, at 1631- and 70.92-fold respectively, with respect to the promastigote form. Additionally, MG proved to be even more active against intracellular amastigotes of the parasite (EC50 4.24 µM). Our results showed that antileishmania activity was associated with increased TNF-α, IL-12, NO and ROS levels, as well as decreased IL-6 and decreased arginase activity. In addition, MG induced increased phagocytic capability, and lysosomal volume in macrophages; structural parameters of microbicidal activity. Taken together, our results suggest that MG may be a promising candidate for new drug development against leishmaniasis.


Subject(s)
Antiprotozoal Agents/pharmacology , Gallic Acid/analogs & derivatives , Leishmania/drug effects , Amphotericin B/pharmacology , Antiprotozoal Agents/chemistry , Gallic Acid/adverse effects , Gallic Acid/chemistry , Gallic Acid/pharmacology , Gene Expression Regulation/drug effects , Macrophages/drug effects , Meglumine Antimoniate/pharmacology , Molecular Structure , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...